Инженерный справочник DPVA.ru (ex DPVA-info)

Проект Карла III Ребане и хорошей компании
 Задвижки, фильтры, кланы, клапаны, виброкомпенсаторы ABRA
Межфланцевые прокладки. Герметики. Уплотнительные материалы

Таблицы DPVA - Инженерный Справочник


Free counters!

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Линейная алгебра. Вектора, матрицы, определители, миноры, детерминанты...  / / Скалярное произведение векторов. Он-лайн калькуляторы скалярного произведения и угла между векторами по координатам.


  Вы сейчас находитесь в каталоге:
   Линейная алгебра. Вектора, матрицы, определители, миноры, детерминанты...   

Скалярное произведение векторов. Он-лайн калькуляторы скалярного произведения и угла между векторами по координатам.

Поделиться:   

Скалярное произведение векторов. Он-лайн калькуляторы скалярного произведения и угла между векторами по координатам.

Скалярное произведение векторов - это операция над двумя векторами, результатом которой является число (не вектор).

Определяется скалярное произведение, как правило, следующим образом:

Скалярное произведение векторов.                                          угол между векторами 

Иными словами, скалярное произведение векторов равно произведению длин этих векторов на косинус угла между ними . Необходимо заметить, что угол между двумя векторами - это угол, который они образуют, если отложить их от одной точки, то есть начала векторов должны совпадать.

Непосредственно из определения следуют следующие простейшие свойства:

1. Скалярное произведение произвольного вектора а на себя же (скалярный квадрат вектора а) всегда неотрицательно, и равно квадрату длины этого вектора. Причем скалярный квадрат вектора равен нулю тогда и только тогда, когда данный вектор - нулевой.

скалярный квадрат

2.Скалярное произведение любых перпендикулярных векторов a и b равно нулю.

скалярное произведение перпендикулярных векторов

3. Скалярное произведение двух векторов равно нулю тогда и только тогда, когда они перепендикулярны или хотя бы один из них - нулевой.

4. Скалярное произведение двух векторов a и b положительно тогда и только тогда, когда между ними острый угол.

5.Скалярное произведение двух векторов a и b отрицательно тогда и только тогда, когда между ними тупой угол.

Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами.

(Вычислить координаты вектора, если заданы координаты его начала и его конца очень просто -

Пусть есть вектор AB, А - начало вектора, В - конец, и координаты этих точек

А=(a1,a2,a3),        В=(b1,b2,b3)

Тогда координаты вектора АВ:

АВ={b1-a1, b2-a2, b3-a3}.

Аналогично в двухмерном пространстве - просто отсутствуют третьи координаты)

Итак, пусть даны два вектора, заданные набором своих координат:

а) В двухмерном пространстве(на плоскости).

координаты вектора на плоскости

Тогда их скалярное произведение можно вычислить по формуле:

скалярное произведение через координаты

б) В трехмерном пространстве

координаты вектора в пространстве

Аналогично двухмерному случаю, их скалярное произведение вычисляется по формуле:

скалярное произведение через координаты

Вычисление угла между векторами с помощью скалярного произведения.

Самое распространенное математическое приложение скалярного произведения двух векторов - это вычисление угла между векторами, заданными своими координатами. Для примера возьмем трехмерный случай. (Если вектора заданы на плоскости, то есть двумя координатами, во всех формулах просто отсутствуют третьи координаты.)

Итак, пусть у нас есть два вектора:

координаты вектора в пространстве

И нам нужно найти угол между ними. С помощью их координат найдем их длины, а затем просто приравняем две формулы для скалярного произведения. Таким образом мы получим косинус искомого угла.

Длина вектора а вычисляется как корень из скалярного квадрата вектора а, который мы вычислим по формуле для скалярного произведения векторов, заданных координатами:

вычисление длины вектора через координаты

Аналогично вычисляется длина вектора b.

Итак,

вычисление косинуса угла между векторами через их координаты

Значит,

вычисление угла между векторами через их координаты

Искомый угол найден.

Он-лайн калькулятор скалярного произведения двух векторов.

Чтобы найти скалярное произведение двух векторов с помощью данного калькулятора, нужно ввести в первую строку по порядку координаты первого вектора, во вторую- второго. Координаты векторов могут быть вычислены по координатам их начала и конца (см. выше Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами. )

Если вектора заданы двумя координатами, то на месте третьей координаты каждого вектора нужно поставить ноль.

Координаты первого вектора: { ,    ,    }

Координаты второго вектора: { ,    ,    }

Ответ: 

Он-лайн калькулятор угла между векторами.

Аналогично предыдущему калькулятору, необходимо ввести координаты обоих векторов по порядку, и если вектора заданы двумя координатами - на месте третьих координат следует поставить ноль.

Координаты первого вектора: { ,    ,    }

Координаты второго вектора: { ,    ,    }

Ответ:  o


Поиск в инженерном справочнике DPVA. Введите свой запрос:
Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:
  • Понятие вектора. Действия с векторами, их свойства - сложение и вычитание векторов, умножение на число, коллинеарность. Скалярное умножение (произведение) векторов. Проекции, разложение векторов, координаты, действия в координатах, взаимное расположение
  • Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.
  • Вы сейчас здесь: Скалярное произведение векторов. Он-лайн калькуляторы скалярного произведения и угла между векторами по координатам.
  • Векторное произведение двух векторов. Он-лайн калькулятор.
  • Метод координат на плоскости. Расстояние между точками. Расстояние до точки от начала координат. Координаты точки, делящей отрезок в отношении λ . Координаты середины отрезка. Координаты центра тяжести треугольника.
  • Уравнения прямой на плоскости. Общее уравнение прямой. Уравнение прямой "в отрезках"; прямой с угловым коэффициентом. Уравнение пучка прямых, проходящих через точку. Уравнение прямой, проходящей через 2 точки. Нормальное уравнение прямой.
  • Взаимное расположение прямых на плоскости. Расположение прямых - условие параллельности, условие перпендикулярности, условие пересечения по углом φ , нахождение общих точек прямых. Расстояние от точки до прямой.
  • Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.
  • Определитель = детерминант 2-го, 3-го, n-го порядка. Обозначение, правила вычисления. Правило треугольников, разложение по элементам строки. Алгебраическое дополнение, минор к элементу. Примеры вычисления определителей = детерминантов
  • Системы линейных алгебраических уравнений (СЛАУ). Общий вид, матрица системы, СЛАУ в матричной форме, решение СЛАУ. Разновидности СЛАУ - совместная, несовместная, определенная, неопределенная, однородная, неоднородная... Обратная матрица и ее нахождение.
  • Методы решения невырожденных систем линейных алгебраических уравнений (СЛАУ) - по формулам Крамера, матричный способ. Метод Гаусса = метод последовательного исключения неизвестных при решения систем линейных алгебраических уравнений. Наличие решений.
  • Собственные векторы, собственные значения матрицы и их нахождение. Характеристическое уравнение матрицы. Подпространство собственных векторов.
  • Поиск в инженерном справочнике DPVA. Введите свой запрос:|
    Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
    Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.