Первый закон термодинамики, внутренняя энергия, тепло, работа, энтальпия, энтропия.
DPVA logo
Навигация: / / Физический справочник / / Тепловые величины: теплоемкость, теплопроводность, температуры кипения, плавления, пламени. Удельные теплоты сгорания и парообразования. Термические константы. Коэффициенты теплообмнена и расширения / / Термодинамика. Энергия, тепло, работа, энтальпия, энтропия... / / Первый закон термодинамики = Закон сохранения энергии, внутренняя энергия, тепло, работа, энтальпия, энтропия.
Поделитесь ссылкой с друзьями:

Закон сохранения энергии - 1-й закон термодинамики, внутренняя энергия, тепло, работа, энтальпия, энтропия.
 

Первый закон термодинамики = Закон сохранения энергии  гласит, (4 разные формулировки) что :

  1. Энергия не может быть создана или уничтожена (закон сохранения энергии), она лишь переходит из одного вида в другой в различных физических процессах. Отсюда следует, что внутренняя энергия изолированной системы остается неизменной.
  2. Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.
  3. Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе и не зависит от способа, которым осуществляется этот переход.
  4. Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Первый закон термодинами гласит, что энергия не может быть создана или уничтожена. Таким образом, энергия системы (замкнутой) - постоянна. Тем не менее, энергия может быть передана от одного элемента системы другому. Рассмотрим замкнутую систему, изолированную от остальных. Передача энергии между различными подсистемами в ней может быть описана как :

  • E1 = E2
    • где
    • E1 = начальная энергия
    • E2 = конечная энергия

Внутрення энергия (в термодинамике) включает :

Первый закон является основой для термодинамической науки и инженерного анализа.

Базируется на возможных типах обмена (энергии), ниже приведены 3 типа систем:

Первый закон термодинамики помогает использовать ключевые концепции внутренней энергии (internal energy), тепла (heat), и работы системы (system work). которые широко используются в описании тепловых систем (heat engines).

Изменение внутренней энергии системы равно теплу (добавленному системе) минус работа, совершенная системой

  • dE = Q - W
    • где
    • dE = изменение внутренней энергии
    • Q = добавленное тепло
    • W =работа системы

1й закон не дает информации о характере процесса и не определяет конечного состояния равновесия. Интуитивно мы понимаем, что энергия переходит от объекта с более высокой температурой к объекту с менее высокой температурой. Таким образом, 2й закон нам нужен для получения информации о характере процесса.

Энтальпия -

Энтальпия определяется как:
  • H = U + PV
    • где
    • H = энтальпия
    • U = внутренняя энергия
    • P = давление
    • V = объем системы

Энтропия.

Термин "энтропия" - величина, характеризующая степень неопределенности системы. Однако, в термодинамике это понятие используется для определения связанной энергии системы. Энтропия определяет способность одной системы влиять на другую. Когда объекты пересекают нижнюю границу энергетического уровня необходимого для воздействия на окружающую среду, энтропия возрастает. Энтропия тесно связана со вторым законом термодинамики.

Энтропия (обычно обозначается S), функция состояния термодинамической системы, изменение которой dS в равновесном процессе равно отношению количества теплоты dQ, сообщенного системе или отведенного от нее, к термодинамической температуре Т системы.

в символьном виде записывается, как

Неравновесные процессы в изолированной системе сопровождаются ростом энтропии, они приближают систему к состоянию равновесия, в котором S максимальна (закон неубывания энтропии). Для вселенной в целом энтропия возрастает.