|
Интеграл степенной функции. |
Интеграл степенной функции. |
Интеграл, сводящийся к интегралу степенной функции, если загнать х под знак диффференциала. |
|
- | |
Интеграл экспоненциальной функции. |
Интеграл экспоненты, где a-постоянное число. |
Интеграл сложной экспоненциальной функции. |
Интеграл экспоненциальной функции. |
- | |
Интеграл, равняющийся натуральному логарифму. |
Интеграл : "Длинный логарифм". |
Интеграл : "Длинный логарифм". |
|
Интеграл : "Высокий логарифм". |
Интеграл, где х в числителе заводится под знак дифференциала (константу под знаком можно как прибавлять, так и отнимать), в итоге схож с интегралом, равным натуральному логарифму. |
Интеграл : "Высокий логарифм". |
|
- | |
Интеграл косинуса. |
Интеграл синуса. |
Интеграл, равный тангенсу. |
Интеграл, равный котангенсу. |
- | |
Интеграл, равный как арксинусу, так и арккосинусу |
Интеграл, равный как арктангенсу, так и арккотангенсу. |
Интеграл, равный как арксинусу, так и арккосинусу. |
Интеграл, равный как арктангенсу, так и арккотангенсу. |
Интеграл равный косекансу. |
Интеграл, равный секансу. |
Интеграл, равный арксекансу. |
Интеграл, равный арккосекансу. |
Интеграл, равный арксекансу. |
Интеграл, равный арксекансу. |
- | |
Интеграл, равный гиперболическому синусу. |
Интеграл, равный гиперболическому косинусу. |
Интеграл, равный гиперболическому тангенсу. |
Интеграл, равный гиперболическому котангенсу. |
Интеграл, равный гиперболическому синусу, где sinhx - гиперболический синус в ангийской версии. |
Интеграл, равный гиперболическому косинусу, где sinhx - гиперболический синус в ангийской версии. |
Интеграл, равный гиперболическому тангенсу. |
Интеграл, равный гиперболическому котангенсу. |
Интеграл, равный гиперболическому секансу. |
Интеграл, равный гиперболическому косекансу. |
Формулы интегрирования по частям. Правила интегрирования.
Интегрирование произведения (функции) на постоянную: | |
Интегрирование суммы функций: | |
Формула интегрирования по частям неопределенные интегралы: | |
Формула интегрирования по частям определенные интегралы: | |
Формула Ньютона-Лейбница определенные интегралы: | Где F(a),F(b)-значения первообразных в точках b и a соответственно. |